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ABSTRACT

Social media platforms use short, highly engaging videos to catch

users’ attention. While the short-form video feeds popularized by

TikTok are rapidly spreading to other platforms, we do not yet

understand their impact on cognitive functions. We conducted a

between-subjects experiment (𝑁 = 60) investigating the impact

of engaging with TikTok, Twitter, and YouTube while performing

a Prospective Memory task (i.e., executing a previously planned

action). The study required participants to remember intentions

over interruptions. We found that the TikTok condition signifi-

cantly degraded the users’ performance in this task. As none of

the other conditions (Twitter, YouTube, no activity) had a similar

effect, our results indicate that the combination of short videos and

rapid context-switching impairs intention recall and execution. We

contribute a quantified understanding of the effect of social media

feed format on Prospective Memory and outline consequences for

media technology designers to not harm the users’ memory and

wellbeing.

CCS CONCEPTS

• Human-centered computing→ Empirical studies in ubiq-

uitous and mobile computing; Smartphones.

KEYWORDS

Prospective Memory, Social Media, Digital Wellbeing, TikTok

ACM Reference Format:

Francesco Chiossi, Luke Haliburton, Changkun Ou, Andreas Butz, and Al-

brecht Schmidt. 2023. Short-Form Videos Degrade Our Capacity to Retain

Intentions: Effect of Context Switching On Prospective Memory. In Proceed-
ings of the 2023 CHI Conference on Human Factors in Computing Systems
(CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3544548.3580778

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00

https://doi.org/10.1145/3544548.3580778

1 INTRODUCTION

Social media has exploded into ubiquity in recent years and is cur-

rently used by more than half the world’s population [51]. Through

social media feeds, people are frequently exposed to new informa-

tion at an unprecedented rate. The information rate is also continu-

ing to rise with the growing popularity of TikTok and other short

video platforms, which displays a feed of brief, highly engaging

videos. Although this high information density may be desired as

it is beneficial for certain applications or appeals to users due to an

instant gratification effect, it can also have serious negative conse-

quences. Digital information overload causes chronic stress [43]

and social media use has been shown to have a detrimental impact

on memory performance [96]. We are still only beginning to un-

cover the breadth of the impact that social media can have on our

psychological and cognitive functions.

TikTok’s model of short, engaging videos that cause users to

switch contexts rapidly is spreading across social media platforms

(e.g., Instagram Reels [48] and YouTube Shorts [49]). The wide-

spread use of such video formats has certain known, negative

consequences, including frequent disruptions, especially at the

workplace [2]. Online interruptions are the most common in the

workplace [14] and are associated with increased workload, chronic

stress, and mental fatigue [81]. Specifically, this stream of video

information continuously fills our mental buffer, which causes us

to eliminate potentially useful information in favor of more su-

perficial or irrelevant information provided by the social media

feed. Past research in workplace contexts has demonstrated that

context switching has a detrimental impact on cognitive functions

and task performance [65, 109]. However, the impact of context

switching in social media is not well understood. Zheng [125] found

that watching short videos negatively impacts visual short-term

memory, which suggests that we should better understand and

characterize the impact of different social media feed formats on

different cognitive functions. Prospective Memory (PM) is a funda-

mental cognitive function that describes our ability to remember

to execute a planned action while doing an unrelated task [39]. PM

is highly relevant because it enables productive activities, makes

people effective in knowledge work, and accomplishing daily tasks

(e.g., running errands or remembering to attend a meeting). Conse-

quently, we aim to investigate the research question:

RQ: How do different social media feeds impact prospective mem-

ory?
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In this paper, we investigate how different social media feed

interruptions impacts PM. We conducted a between-subjects study

where 𝑁 = 60 participants simultaneously executed a lexical deci-

sion (LD) task and a PM task in two sessions with a 10-minute break

in the middle. During the break, participants engaged in one of four

activities, depending on their experimental condition: Rest, Twitter,
YouTube, or TikTok. Following the break, participants returned to

the simultaneous LD and PM tasks to evaluate the impact on their

PM. We hypothesized that TikTok would have the most detrimen-

tal effect on PM because it is multi-modal, highly engaging, and

exposes users to rapid changes in context. Our results show that

TikTok significantly reduces PM performance relative to Rest. On
the other hand, we found that neither Twitter nor YouTube had any

significant effect on performance. This paper contributes a quanti-

fied measure of the impact of three social media feed formats on

PM, as well as an initial characterization of which social media feed

format have the most significant impact on performance. Media

technology designers need to understand the detrimental effect of

exposing users to highly engaging rapid context switches, as poor

PM performance can have drastic consequences for users in their

daily lives.

2 RELATEDWORK

In this section we provide an overview of PM functioning and the

impact of interruptions. Finally, we report the effects of social media

distraction on cognitive functions related to PM that motivated our

research.

2.1 Prospective Memory

PM is considered as “the ability to remember to perform a previ-

ously planned action at a precise moment in time or following a

specific event while one is engaged in performing another activ-

ity” [39]. It is a cognitive function that involves different cognitive

processes, i.e., planning, attention, monitoring, and working mem-

ory. Individuals frequently become involved in multiple ongoing

tasks after formulating an intention and, in most everyday contexts,

cannot retain the intention in focal attention [23].

In the PM paradigm developed by Einstein-McDaniel [31], par-

ticipants are informed that if a particular target cue appears while

doing an ongoing activity, e.g., a lexical decision task, they should

execute a distinct action, such as pressing a specific key on the

keyboard. Retrieving the delayed intentions requires a monitor-

ing process mediated by bottom-up and top-down processes [100].

However, when we have to retain multiple intentions, we need to

be in a preparatory state and actively monitor for the occurrence

of target cues [32, 107]. Specifically, monitoring requires allocating

attentional resources for detecting the cue and memory resources

to maintain and rehearse the intentions to execute [41]. Proper PM

functioning is closely linked to productivity and safety [27] as it

allows the execution of sequential steps such as programming [94],

office work [53], or taking or providing medication at the right time

[93].

Before we introduce the role of interruptions in PM, however,

it is important to observe that, unlike any other memory task, in

PM tasks, the recall of information does not occur as a result of

an explicit request by someone [25] (as for example in episodic

memory tasks) but must be produced autonomously by the subject,

in a self-initiated manner [71]. Therefore, PM tasks do not only

impose attentional demands but also memory demands for keeping

the intention representation active and retrieving it [37, 108].

However, the cognitive demands of PM activities may not be

limited to remembering intentions and monitoring cues. Therefore,

this study focuses on another set of processes likely involved in

PM performance, which has received little attention from PM re-

searchers so far: the effect of temporary interruption of the ongoing

and PM tasks.

2.2 Interruptions in Prospective Memory

As previously stated, PM paradigms encompass a dual-task nature

in which participants are engaged in an ongoing activity while

being asked to act upon perceiving a specific target cue. However,

outside laboratory settings, delays and interruptions frequently

prohibit a person from carrying out an intended action after it is

retrieved. Interruptions are pervasive in everyday life and at work,

but there is a significant gap in our understanding of how such

disruptions impair PM [69]. Specifically, in this work, we will fo-

cus on external interruptions. External sources of interruptions

include face-to-face meetings [80], instant messenger chats [40],

workplace design features [82] and more. These examples of exter-

nal interruptions also differ in the channel of interaction (i.e., direct

or via technology [72]), the sensory channels involved [60] or their

information richness [18].

Multiple studies have demonstrated that after task interruption,

task goals fade from memory, resulting in a long time to resume

and complete the interrupted task, negatively impacting perfor-

mance [1, 6, 76]. The detrimental behavioral impact of interrup-

tions has been explained in terms of memory for goals theory [5],

focusing on memory-based deactivation of the interrupted task, or

theory of attention residue [56], where the interruption retains at-

tentional resources to some degree away from the user. Ultimately,

the outcome is similar: interruptions have a negative impact on

performance in the task at hand [57, 58]. Those two theories are

intrinsically and functionally connected to how PM works. Inter-

ruptions implicitly require the involvement of PM processes as,

after interruptions, we have to retrieve what we were engaged in

and execute it [28].

When PM processes are interrupted, we are requested to resume

the interrupted task [28]. Then, we allocate residual attentional

resources to monitoring prospective intentions [103], and to recall-

ing and executing intentions again upon the appearance of the PM

cue [24]. This repeated process with either expected memory fading

or reduced attentional resources might induce a failure in these

processes, resulting in forgetting about the halted work [69, 92]. In

summary, interruptions are a cognitive burden that typically affect

interrupted users’ cognitive capacity to complete the interrupted

task efficiently.

2.3 Social Media as a Form of Distraction

Distractions are caused by task-irrelevant stimuli that interrupt

goal-directed behavior [19]. Social media distraction is the process

through which social media cues attract people’s attention away

from the task at hand (e.g., working). Social media interruptions
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differ significantly from workplace interruptions as they are more

frequent (easily over 100 per day), more complex, and less pre-

dictable [29]. This situation might regularly arise due to external

(e.g., persistent notifications) or internal cues (e.g., unanswered

messages) [119]. Just as the above-mentioned interruptions, social

media distractions also seem to affect memory performance, as

shown in free recall tasks [36, 99]. Those results are consistent with

the idea that social media-induced distractions may harm memory

functioning [35]. This detrimental effect might be explained with

theories of memory for goals and attentional residue, as attentional

disengagement interferes with memory encoding [45].

Prior work in HCI has investigated methods for assisting users

in using their phones more intentionally (e.g., [44, 111]), thereby

avoiding being drawn in by the engaging strategies of social media

designers. However, absentminded scrolling continues to be an

issue [63], motivating us to investigate the impact of social media

feed designs.

More recently, social media apps started to employ different de-

sign strategies, e.g., video autoplay, pull-to-refresh, infinite scrolling,

and recommendations, to maximize user engagement and attention

capture [61]. These designs create an immediate reward loop by

showing content personalized to the user’s subjective preference

and interest [123], based on prior browsing histories and tagged

video classification [10, 17]. The fast pace of switching between

topics, which in the case of short form videos ranges from 15 to 60

seconds, and their often emotional content makes the social media

distractor increase attentional disengagement [112, 120], and there-

fore impairs our capacity to timely and accurately resume the task

at hand. However, there have only been a small number of studies

on problematic short form video viewing habits, partly because

short form video apps have only recently begun to proliferate.

The mechanisms underlying these effects are still not fully un-

derstood. However, recent work showed how a fast information

rate might be linked to cognitive performance impairment in dual-

task [113] and working memory settings [29, 125]. Dual-task set-

tings and working memory are intrinsically related to PM, as PM

encompasses multiple tasks to execute, and information to be kept

updated in mind. Further research on the relationship between

new forms of social media content and executive functioning is

necessary, given their increasing pervasiveness and popularity in

our daily life [51, 67]. In this study, we investigated the effect of

different social media feeds interruptions on executing previously

planned intentions in a dual-task setting.

3 METHOD

We conducted a lab study using a between-subjects design with

four Interruption conditions Rest, Twitter, YouTube, or TikTok.
The four conditions consist of three popular social media platforms

with varying engagement styles and media formats as well as a

control condition (Rest) where participants are requested to not

engage with any social media and do not perform any other actions.

We selected three social media platforms with large variation in

feed format. TikTok and Twitter require users to rapidly switch

contexts, while YouTube generally consists of longer-format videos

and therefore fewer context switches. The media format also varies

between the three platforms. Both TikTok and YouTube are video-
based while Twitter is primarily text-based (with some photos). We

did not include either Instagram or Facebook in this study, because

their feeds are not sufficiently differentiable from TikTok and Twitter
(i.e., they have a combination of videos, images, and text).

3.1 Participants

We recruited 𝑁 = 60 participants (35 female, 25 male, aged 19-

34, 𝑀 = 24.80, 𝑆𝐷 = 3.40) through a university mailing list and

social media. All participants were fluent German speakers (C2 from

CEFR
1
), which was required for the LD task, and reported normal

or corrected-to-normal vision with no history of any neurological

or psychiatric disorders. The participants all had a high school

education or higher, and reported a weekly average screen time

of 2.04 hours (𝑆𝐷 = 3.37) in the Rest condition, in the TikTok
condition 5.57 hours (𝑆𝐷 = 2.25), in the YouTube condition of

6.75 hours (𝑆𝐷 = 2.49), and in the Twitter condition of 5.51 hours

(𝑆𝐷 = 2.45). Moreover, we collected the screen time associated to

the specific condition participants were allocated to. Specifically,

participants allocated to the TikTok condition spent an average of

1 hour and 46 minutes per week on the app (𝑆𝐷 = .81). YouTube
participants showed an average screen time of 1 hours and 44

minutes (𝑆𝐷 = 1.94) on YouTube, while Twitter participants spent
an average of 55 minutes (𝑆𝐷 = .52) on the Twitter social media

app in the week before participation. Participants were randomly

assigned to a condition containing a platform they use frequently in

their daily life. We randomly assigned participants to either the app

with the highest screen time in the previousweek or to Rest.We used

this assignment method so that all participants have a personalized

feed on the platform used in their condition. Rather than attempting

to control the content on each feed, which would likely lead to some

participants being uninterested in the content, we opted for this

ecologically situated approach. The only exception to this allocation

procedure was the YouTube condition, where we let participants

choose one video out of ten options. This approach was chosen in

order to control video duration but still allow participants to choose

from a variety of contents e.g., education, music, and entertainment.

3.2 Tasks

We instructed participants to engage in a Lexical Decision (LD)

task and a Prospective Memory (PM) task simultaneously, based on

Cona et al. [22]. A large body of studies has demonstrated that this

combination of tasks is suitable for monitoring prospective memory

processes [22, 33, 98]. Both tasks were conducted on a computer

monitor (Acer Predator XB241YU 23.8 inch, 165 Hz, 2560 x 1440

pixels) with a mouse and keyboard. We covered all of the keys on

the keyboard except for those used in the experiment (Q,W, E, N,M,

and Spacebar). The experiment was created using PsychoPy [83].

The tasks encompassed 160 LD trials and 16 PM trials (10% of

the LD trials) in two different blocks (Pre and Post Interruption), for

a total of 320 LD and 32 PM trials. Each experimental block started

with a fixation cross (+) with a pseudorandom duration (1250, 1500,

or 1750 ms) at the center of the screen. Then, a string of letters ap-

peared as a stimulus for maximum 3000 ms. Inter-Stimulus-Interval

1
https://www.coe.int/en/web/common-european-framework-reference-

languages/level-descriptions

https://www.coe.int/en/web/common-european-framework-reference-languages/level-descriptions
https://www.coe.int/en/web/common-european-framework-reference-languages/level-descriptions
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was set to 1000 ms. In the LD task, we displayed sequences of letters

on the monitor and participants had to determine whether each

sequence was a valid word or not. They pressed N for words and

M for non-words with the index finger and the middle finger of

the right hand, respectively. We counterbalanced the key-response

mapping across participants. Word stimuli were extracted from the

SUBTLEX-DE database [16], with a word length ranging from six to

eight letters. Psycholinguistic properties, such as the mean length

and frequency, were matched across experimental sessions [15].

Non-words were pseudo-word stimuli created from the used words

by changing one or two letters. Participants were required to re-

spond to word stimuli as fast and accurately as possible. The PM

task is depicted in Figure 1.

Figure 1: PM paradigm. Participants performed a lexical de-

cision task, i.e, performing a decision if one of the present

words was either a word or not, and a PM task, where they

were required to press a specific button in occurrence of a

PM cue word ("blau", "lila" and "grün").

In the PM task, participants were told to remember to carry

out three different intentions linked to three different PM words.

We instructed participants to press special keys if one of three

keywords appeared on the screen instead of pressing the keys for

the LD task. They were required to press Q for ’Blau’ (blue), W
for ’Lila’ (purple) and E for ’Grün’ (green). Between a PM word,

at least 10 LD trials appeared before the first PM cue and at least

8 LD trials between each pair of PM cues. A practice block with

just the LD task (five word/non-word trials) was given at the start

of the experiment. Participants used their personal mobile devices

and headphones during the intermission tasks. We implemented

all surveys using Google Forms.

3.3 Interruption Conditions

Each participant completed two rounds of the simultaneous LD and

PM tasks with a 10 minute interruption in the middle, which varied

according to their experimental condition. The four conditions for

the interruption are as follows:

$ Rest: Participants took a break with no input. We instructed

them not to look at their phones or any other screen.

�Twitter: Participants were instructed to scroll through their own

Twitter feed for the entire interruption. A Twitter feed consists of

short texts with occasional photos. The feed switches contexts

rapidly, but does not contain highly engaging video content.

Æ YouTube: We prepared a playlist of 10 minute YouTube videos

in advance from a range of topics including entertainment and

education (e.g., TED Talks). The participants were told to choose

the video that was most interesting to them and watch it for the

entire interruption. Although participants did not view their own

personalized YouTube feeds, this method enabled us to control

for the length of the videos, while still giving them some choice

in content. The YouTube experience generally consists of longer-

format videos with higher production value. By limiting the users to

a single video, they do not switch contexts during the interruption.

� TikTok: Participants were instructed to watch videos on their

own TikTok feed for the entire interruption. A TikTok feed consists

of brief videos with sound. The feed is highly engaging and switches

contexts rapidly.

3.4 Procedure

After introducing the study and obtaining informed consent, each

participant proceeded through a beginning survey, four experimen-

tal steps, and finally an ending survey, as shown in Figure 2.

In the beginning survey, we asked participants which social

media platforms they use and the associated screen time. This

information was used to assign participants to a study condition

(Rest, Twitter, YouTube, or TikTok).
First, in the training stage, participants performed the combined

LD and PM task for 10 trials. This stage ensured that the partici-

pants understood the requirements before conducting a measured

task. In TaskPre, participants performed the combined LD and PM

tasks for 176 trials. Following TaskPre, the participants engaged

in a break condition for 10 minutes. Depending on their assigned

condition, the participants either engaged with a social media feed

or took a break with no phone use. After the break condition, the

experimenter prompted participants to return to the computer and

perform another 160 trials for the LD and 16 trials for the PM

task (TaskPost). Finally, participants completed an Ending Survey,

reporting their overall screen time.

3.5 Measures

We measured behavioral data and collected responses to both a

Beginning Survey and an Ending Survey. Each of these data sources

require separate analysis methods. The questionnaires are included

in the supplementary material.

In the beginning survey, we recorded which social media plat-

forms each participant uses (“Which social media platform do you

use between Twitter, TikTok and Youtube?”). Specifically, we asked

participant to report how much time they spend in the three social
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Ending
survey

Beginning
survey

Condition
Assignment

Interruption

Twitter

YouTube

TikTok

Rest

Training
LD & PM

Taskpₒst
LD & PMLD & PM

Taskprₑ

Figure 2: Overview of the experiment timeline. Participants complete a Beginning Survey and are then assigned to one of

4 conditions. After a training phase, participants then perform LD and PM tasks in TaskPre, followed by an Interruption

depending on their condition assignment (Rest, Twitter, YouTube, or TikTok). Finally, the participants perform the LD and PM

tasks again in TaskPost and complete an Ending Survey.

media apps of interest. This information was used to assign partici-

pants to an appropriate condition, i.e., to the social media app they

spent the most time with, and demographic information. Regarding

the behavioral performance, we measured accuracy and reaction

times (RTs) for both the LD and PM tasks. Lastly, we analyzed the

standard scales (BSMAS for social media addiction [75], and SUQ-A

for absent-minded phone use [66]) within the questionnaires ac-

cording to their original documentation. We additionally collected

Likert-scale responses on engagement and an Ending Survey for

collecting screen time data (“Please enter your daily average screen

time of the last week (search for Screen Time on iPhone or go to

Digital Wellbeing on Android)”).

3.6 Analyzing Performance Trade-Off

We analyzed the reaction time distribution for the correct and

error responses as two different distributions [12]. To quantify

the behavioral differences between correct and error responses,

we adopted a Drift-Diffusion Model (DDM) [86], which has been

leveraged in cognitive science [46] and computer graphics [30] to

model perceptual decision-making. The DDM model also has been

suggested to model choice and non-choice in LD and PM tasks [11,

20, 115]. We chose this modeling approach as it is informative

on different processing components relevant to PM. Traditional

analysis approaches investigated RTs and task accuracy separately,

profiting of only a subset of the available data, while the diffusion

model is applied to the joint distribution of RT and accuracy data.

DDM allows for the decomposition of RTs and accuracy into a set

of latent parameters that represent underlying cognitive processes

such as task load [7], evidence accumulation [106], and decreased

cognitive capacity [110]. The DDM assumes that decisions are made

by a Wiener process that accumulates cognitive evidence over time

from a starting point towards two response boundaries.

A DDM model includes 4 parameters: the drift rate (`), the de-

cision bound (𝐵), the non-decision time (𝑡 ) and variance (𝜎) com-

ponent. As an interpretation, the drift rate informs the speed and

direction of information accumulation. The drift rate can be inter-

preted as a measure of subjective task difficulty: higher (absolute)

drift rates indicate less demanding tasks. Second, the decision bound

characterizes the time needed to make a decision, and with a larger

decision bound, more effort is expected to form a decision. Here,

smaller values imply shorter information uptake and increased er-

roneous responses. Third, the non-decision time captures the time

spent for stimulus processing, but unrelated to the decision, such as

perception of the target stimulus or execution of the response and

stimulus encoding time. Lastly, the variance component models

the uncertainty of a decision process, thus, an increased variance

could result in more diverse reaction times needed to perform a

decision when the PM stimulus is presented. Several studies have

validated these parameters as sensitive to different experimental

manipulations, lending credence to their validity [3, 116, 117].

4 RESULTS

In this section, we first present results on behavioral accuracy us-

ing a Linear Mixed Model (LMM) approach. Second, we employ a

Generalized Linear Mixed Model (GLMM) to investigate differences

in the reaction times distributions. Finally, depending on normality,

evaluated by the Shapiro-Wilk test [88], we report two-way mixed

ANOVA results for parameter analysis on the fitted DDM parame-

ters, or ART ANOVAs [121] for the non-parametric data. To analyze

subjective responses collected from the engagement, SUQ-A, and

BSMARS questionnaires, we performed a mixed ANOVA on the

Interruption effect, with an additional Bayes factor ANOVA if

the results were non-significant.
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Figure 3: An overview of reaction time distributions, sepa-

rated by correct and error responses in the LD and PM Task.

The upper row (pre-interruption) shows reaction times be-

fore the interruption. The difference that are shown are due

to the random assignment and are not linked to the condition.

the lower row (post-interruption) shows the reaction time

after the interruptions in which participants experienced

different conditions. The blue distributions show reaction

time associated with correct responses and the red with er-

ror responses. A drastic increase in error responses can be

seen in the TikTok Post-Interruption PM trials (bottom right

diagram).

4.1 Behavioral results

To give an overview of the reaction time distributions, we visualized

the distribution for correct and error responses across different

interruption conditions both in LD and PM tasks (see Figure 3).

A drastic increase in error responses can already be seen in the

TikTok Post-Interruption PM trials (bottom right diagram). Below,

we report our previously described statistical analysis of these

distributions.

4.1.1 Behavioral Accuracy. As shown in Figure 4, we inspected the

response accuracy (total number of correct key presses divided by

the total number of key presses) of participants
2
.

Lexical Decision Task. We conducted an LMM (𝑅2 = 0.67) to pre-

dict accuracy with interruption (formula: accuracy ∼ interrupt
+ (1|user_id)) guided by REML and an nloptwrap optimizer and

BIC criteria [8, 84]. The model’s intercept corresponding to Tik-
Tok post interruption (𝐶𝐼95% = [0.92, 1.04], 𝑡114 = 30.42, 𝑝 < .001).

We found non-significance when comparing to other interruption

conditions: Rest (𝛽 = −.001,𝐶𝐼95% = [−0.09, 0.09], 𝑡114 = −0.03, 𝑝 =

.975), Twitter (𝛽 = .005,𝐶𝐼95% = [−0.09, 0.10], 𝑡114 = 0.11, 𝑝 = .913),

and YouTube (𝛽 = −0.07,𝐶𝐼95% = [−0.16, 0.02], 𝑡114 = −1.47, 𝑝 =

.144) interruption conditions. Those results showed how any of the

investigated interruption conditions impact the behavioral accuracy

in the LD task.

Prospective Memory Task. Similarly, for PM task, we fitted an

LMM model (𝑅2 = 0.67) to predict accuracy with interruption con-

dition and measure (formula: accuracy ∼ interrupt * measure
+ interrupt + measure + (1|user_id)). In the comparison

with TikTok post (𝐶𝐼95% = [0.40, 0.58], 𝑡110 = 10.94, 𝑝 < .001) in-

terruption accuracy, we found significant and positive results for

Rest (𝛽 = 0.46,𝐶𝐼95% = [0.33, 0.58], 𝑡110 = 7.25, 𝑝 < .001), Twit-
ter (𝛽 = 0.49,𝐶𝐼95% = [0.36, 0.61], 𝑡110 = 7.77, 𝑝 < .001), YouTube
(𝛽 = 0.34,𝐶𝐼95% = [0.22, 0.47], 𝑡110 = 5.42, 𝑝 < .001), as well as

pre interruption condition (𝛽 = 0.31,𝐶𝐼95% = [0.22, 0.41], 𝑡110 =

6.70, 𝑝 < .001). Therefore, we report that in the PM task, behavioral

accuracy after interruption significantly dropped only in the TikTok
condition, while it remained stable across other conditions.

Behavioral accuracy Comparison between LD and PM tasks. Lastly,
we fitted an LMM model (𝑅2 = 0.38) to predict accuracy with in-

terrupt and task (formula: accuracy ∼ interrupt * task +
interrupt + task + (1|user_id)). We found only PM task on

TikTok interruption condition is statistically significant and nega-

tive (𝛽 = −0.28,𝐶𝐼95% = [−0.39,−0.17], 𝑡230 = −5.01, 𝑝 < .001) com-

paring to LD task (𝐶𝐼95% = [0.92, 1.04], 𝑡230 = 31.80, 𝑝 < .001) and

other PM tasks (Twitter: 𝛽 = −0.005,𝐶𝐼95% = [−0.11, 0.10], 𝑡230 =

−0.10, 𝑝 = .923; YouTube: 𝛽 = −0.03,𝐶𝐼95% = [−0.13, 0.08], 𝑡230 =

−0.46, 𝑝 = .648).

In sum, the abovementioned results show that in the TikTok
post-interruption trials, participants produced significantly more

errors in the PM task, whereas the accuracy stayed robust in the

LD task.

2
We further investigated trial by trial accuracy responses by means of a binomial

regression accounting for per item and per participants effects. Results were completely

consistent with the LMM model fit for PM and LD tasks. Results from this additional

analysis are available in the supplementary material.
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Figure 4: Comparison regarding response accuracy. The left figure visualizes pre- and post interruption in Lexical Decision task

for different interruption conditions; the right figure visualizes for Prospective Memory task. The response accuracy barely

changes (note the y-axis scale), whereas it drops dramatically for the PM task in the TikTok interruption condition.

4.1.2 Reaction Times.

Lexical Decision Task. In the LD task, we fitted a GLMM using

REML and an nloptwrap optimizer on raw RTs considering Inter-

ruption as fixed effect and participant and stimulus item (word

stimulus) as a random effects. We performed this analysis on RTs

in both pre and post Interruption. We selected formula rt ∼
interrupt * measure + interrupt + measure + (1|user_id)
+ (1|stimulus) for the GLMMwith Gamma log link function [59],

and guided by BIC criteria [8, 84]. However, we did not report any

significant results (See supplementary materials or Section 7).

Prospective Memory Task. Using a similar approach, we con-

ducted LMM with similar settings to PM task on raw RTs for both

pre and post Interruption. Here, results mimicked the ones for LD

as we did not report any significant difference (See supplementary

materials or Section 7). The distribution of RTs for both correct and

erroneous responses is depicted in Figure 3.

4.1.3 DDM. These observed behavioral accuracy results motivated

us to further inspect participants’ decision behavior in the LD

and PM tasks using DDM for further interpretation. We used Py-

DDM [101] to fit responses in the LD and PM tasks per participant.

In sum, ANOVAs could not find any significance in all model pa-

rameters for the LD task. However, for the PM task, ANOVAs show

significant differences in the drift rate, variance, and decision bound

in different interruptions, and significant differences in the variance

and non-decision time in pre- and post-interruptions. For detailed

results, see Table 1.

Since LD tasks were non-significant, we only ran ART ANOVA

post-hoc comparisons on PM tasks. Figure 5 shows the visualized

results of these comparisons. We found significant differences on

`PM for TikTok pre- and post-interruption contrasts comparison

(𝑑 𝑓 = 56, 𝑆𝐸 = 8.456, 𝑡 = −4.683, 𝑝 < .001), and significant dif-

ferences on `PM across interruption conditions: TikTok vs. Rest
(𝑑 𝑓 = 91.45, 𝑆𝐸 = 11.66, 𝑡 = 4.18, 𝑝 = .002), TikTok vs. Twitter
(𝑑 𝑓 = 11.66, 𝑆𝐸 = 91.45, 𝑡 = −4.67, 𝑝 < .001), TikTok vs. YouTube

(𝑑 𝑓 = 91.45, 𝑆𝐸 = 11.66, 𝑡 = −3.54, 𝑝 = .014). For 𝜎PM, we also

found significant differences for Twitter (𝑑 𝑓 = 56, 𝑆𝐸 = 10.184, 𝑡 =

−3.283, 𝑝 = .044), and significant differences on 𝑡PM for YouTube
(𝑑 𝑓 = 56, 𝑆𝐸 = 8.470, 𝑡 = −3.487, 𝑝 = .014). Across interruption

conditions, we found significant differences on 𝜎PM: TikTok vs. Rest
(𝑑 𝑓 = 106.93, 𝑆𝐸 = 11.52, 𝑡 = −3.72, 𝑝 = .009), TikTok vs. Twitter
(𝑑 𝑓 = 106.93, 𝑆𝐸 = 11.52, 𝑡 = 4.08, 𝑝 = .002), TikTok vs. YouTube
(𝑑 𝑓 = 106.93, 𝑆𝐸 = 11.52, 𝑡 = 3.58, 𝑝 = .014), as well as TikTok vs.

Rest (𝑑 𝑓 = 112, 𝑆𝐸 = 12.04, 𝑡 = 4.14, 𝑝 = .002) on decision bound 𝐵.

For a closer look into the TikTok condition, we visualized the

DDM model (see Figure 6) in pre- and post-interruptions for all 15

participants. In pre-interruption, participants have a 20.00% error

rate, the fitted DDM model (total loss: 457.13) shows a drift rate

` = 1.46, variance 𝜎 = 1.89, decision bound 𝐵 = 1.94, and non-

decision time 𝑡 = 461ms. In the post-interruption, participants have

a total of 50.98% error rate, the fitted DDM (total loss: 461.46) has a

drift rate ` = 0.000, variance 𝜎 = 2.35, decision bound 𝐵 = 1.71, and

non-decision time 𝑡 = 681ms. These results show that our partici-

pants tended to give more correct responses (` = 1.46) before the

TikTok interruption. However, after the interruption, participants

had an equally probable decision tendency towards correct and

error responses given a decision (` = 0.000). Furthermore, the non-

decision time increased from 461ms (pre) to 681ms (post), variance

increased from 1.89 (pre) to 2.35 (post), and the decision bound was

reduced from 1.94 (pre) to 1.71 (post).

4.2 Subjective results

We present subjective results separately for the reported engage-

ment, SUQ-A, and BSMARS. Classical statistical inference was sup-

plemented with Bayes Factors (BFs). This was done to establish

the equivalence of interruptions on some of the dependent vari-

ables, which can be seen as a way of confirmatory testing of the

Null-hypothesis [114].
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Table 1: An overview of analyzed results using two-way ANOVAs on fitted DDM parameters. Significant results are highlighted

in bold font. In terms of interruption, the results indicate significant differences in the drift rate `, variance 𝜎 , and decision

bound 𝐵 in the PM task but no significance in the LD task. For pre- and post-interruption, the ANOVA showed a significant

difference in variance 𝜎 and non-decision time 𝑡 in the PM task but no significance in the LD task.

Interruption Pre-Post Interruption × Pre-Post

𝑓 𝑑 𝑓 𝐹 𝑝 𝜔2/[2 𝑓 𝑑 𝑓 𝐹 𝑝 𝜔2/[2 𝑓 𝑑 𝑓 𝐹 𝑝 𝜔2/[2

`PM 3 56 4.078 .011 0.133 1 56 2.420 .125 0.024 3 56 6.466 .001 0.215

𝜎PM 3 56 4.233 .009 0.139 1 56 12.593 .001 0.167 3 56 4.712 .005 0.157

𝐵PM 3 56 3.020 .037 0.092 1 56 0.025 .874 −0.017 3 56 2.385 .079 0.065

𝑡PM 3 56 1.695 .179 0.034 1 56 15.851 <.001 0.204 3 56 2.692 .055 0.078

`LD 3 56 2.520 .067 0.119 1 56 1.033 .314 0.018 3 56 0.785 .508 0.040

𝜎LD 3 56 1.615 .196 0.03 1 56 1.591 .212 0.010 3 56 0.697 .558 −0.015
𝐵LD 3 56 1.812 .155 0.039 1 56 0.069 .794 −0.016 3 56 0.398 .755 −0.031
𝑡LD 3 56 1.517 .220 0.025 1 56 0.607 .439 −0.007 3 56 0.636 .595 −0.019
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Figure 5: Post-hoc comparisons regarding fitted DDM parameters in the PM task. A larger drift rate ` means a stronger decision

tendency toward correct responses, a larger variance 𝜎 means higher uncertainty in a decision, and a larger bound 𝐵 requires

more effort to form a decision. A larger non-decision time means less efficiency to start a decision.

4.2.1 Engagement. Weperformed amixed one-way ANOVA on the

subjectively reported engagement in each condition. We could not

find any significant differences between Interruption conditions

(𝐹3,56 = 2.59, 𝑝 = .062). Hence, we further executed a Bayes factor

ANOVA against the Null-hypothesis. The result specifically shows

𝐵𝐹01 = 0.893, which means that H1 is only 1.12 times more likely

to occur than H0. This result implies insufficient evidence that

engagement is different between conditions [114].

4.2.2 SUQ-A and BSMARS. We performed a mixed one-way

ANOVA on the reported SUQ-A values but could not find a sig-

nificant difference (𝐹3,56 = 2.267,𝑝 = .091) across the different In-

terruption conditions. A subsequent Bayes factor analysis gives

𝐵𝐹01 = 1.213, meaning that H0 is only 1.213 times more likely than

H1. Similarly, a mixed one-way ANOVA on the reported BSMARS

could not find significant differences (𝐹3,56 = 1.065, 𝑝 = .371) across

the Interruption conditions. A subsequent Bayes factor gives

𝐵𝐹01 = 3.903, meaning that H0 is 3.903 times more likely than

H1 [114].

5 DISCUSSION

We evaluated the impact of different social media feed modalities on

PM performance and RTs. In our study, participants were instructed

to simultaneously perform a LD and PM task with an interruption

that varied according to the experimental condition (Rest, Twitter,
YouTube, or TikTok). We did this to understand whether and how

different social media feed designs, with varying media modali-

ties and context-switch frequencies, impact cognitive performance

in terms of PM. We will first summarize our results, then relate

our findings to the literature on how PM functions and on its rela-

tion with interruptions. We will conclude by summarizing possible

consequences for media technology designers and by highlighting

future work in the field.
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Figure 6: DDM visualizations for speed-accuracy tradeoff

before (left) and after TikTok interruption. The blue his-

tograms on top show the distribution of correct responses,

while the red histograms at the bottom show the error re-

sponse distribution. Bold histograms represent correct and

erroneous responses, and transparent histograms are DDM

simulations. The middle figures are DDM simulated decision

process. In TikTok’s pre-interruption, the measured response

accuracy was 80.00%, with a drift rate ` = 1.46 towards correct

responses. In the post- Tiktok interruption, the measured

response accuracy drops to 49.02%, and the fitted DDM has a

zero drift rate. TikTok’s post-interruption has an equal ten-

dency toward correct and error responses.

5.1 Interpreting the Results

TikTok significantly degraded PM performance in terms of correct

vs. erroneous responses. In fact, participants in the TikTok condi-

tion were only slightly better than randomly guessing after the

interruption. We can therefore conclude that the TikTok condition

had a significant negative impact on PM, while neither Twitter nor
YouTube had any observable effect. We originally hypothesized that

TikTok would have a larger detrimental effect on PM than the other

social media formats because it is highly engaging. However, we

found no significant difference in subjective engagement scores

between any conditions, so it appears that the effect is not caused

by participants being more engaged in the TikTok feed. Further-

more, we investigated if PM functioning might be impacted by

video format or by rapid changes in context. However, as neither

YouTube nor Twitter degraded PM performance, this result seems to

point towards the detrimental impact of the combination of those

two features, as shown in the TikTok interruption. However, this

result could be caused by other factors. In sum, we found that Tik-
Tok significantly degrades PM performance, but further research is

required to understand the exact mechanism underlying this effect.

Additionally, we quantified participants’ social media addiction

(BSMARS) and absentminded smartphone use (SUQ-A) to investi-

gate whether the change in PM was influenced by variations in our

sample populations. However, neither of these measures showed

a significant difference across interruption conditions. Therefore,

based on these three results, performance in the TikTok condition

was not affected by measured individual differences of the partici-

pants but rather by characteristics of the feed itself. It is theoretically

possible that users of specific apps, such as TikTok, might share

specific characteristics or cognitive behaviors, such as a differential

use of social media that might impact psychological and cognitive

features at different levels [78, 102]. Although we found no effect

from differences in SUQ-A or BSMARS, we cannot exclude that

there might have been hidden mediatory variables, such as daily

negative affect [99]. Therefore, future work is necessary to compare

the interruption effect on users unfamiliar with a specific app. This

would further investigate the relationship between PM and spe-

cific social media formats and help uncover the mechanism driving

social media-based PM degradation.

5.2 Impact of Social Media on PM

Our study exposed participants to different social media feeds for-

mat. Our main objective was to determine whether social media

interruptions impact PM retrieval and monitoring to identify crit-

icalities for technology design and manage the adverse effects of

social media interruptions. Short-form videos represent multimodal

and emotional stimuli, whose content is often tailored to their con-

sumer [26]. They are salient interruptions that quickly divert atten-

tion. Thus, when a PM task is interrupted, people might not have

enough time or be too distracted to resume the intention explicitly.

This is because such dynamic visual and auditory features require

attention focus for effective information processing during video

watching [74]. However, such attentional resources demanded by

the video format have been shown to impact the participant’s ca-

pacity to either identify PM cues for triggering intention execution

or keep PM intentions active in mind.

In the PM task, we reported three interesting results that cor-

roborate our interpretation of the detrimental effect of short-term

videos. First, the PM cue detection accuracy decreased by almost

40% after users were interrupted by short-form videos. After the

TikTok interruption, participants tried to retrieve the intention,

but this goal might be fleeting because of the attentional demands

of the interruption. Even if participants were aware of the need

to retrieve the intention, they were not able to associate the PM

cue word with the associated button to press. This interpretation
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is in line with previous research showing that dividing attention

impaired PM performance [34, 73] and visual working memory per-

formance [125]. Moreover, as the interruption recruited attentional

resources, the interruption duration did not leave enough time to

retrieve and successfully resume the intention. Participants were

vulnerable to the interruption and not ready to resume the task, as

they were cognitively engaged with the interruption. This result

is in line with earlier research showing that participants who re-

trieve an intention sometimes forget to execute it even after shorter

interruptions [28, 70].

Second, the DDM parameter analysis allowed us to examine the

cost and interference effects of the interruption. DDM integrates

two behavioral features, which are usually in a compensatory rela-

tionship (i.e., accuracy and response speed), into psychologically

meaningful process parameters [87]. The first parameter extracted

with this approach, the drift rate, mimicked the results we obtained

with behavioral accuracy post-interruption. Drift rate represents

processing efficiency and therefore, it is selectively influenced by

the task demands on participants [91]. In our study, short-form

videos increased the memory demand on participants, making it

harder to process each alternative, leading to reduced evidence

accumulation rates for making a decision. The TikTok interruption

absorbed resources that would otherwise be allocated to the PM

task, thereby slowing processing efficiency [104, 105]. This inter-

pretation is specifically supported by the fact that we did not find

any significant difference when analyzing the parameters from the

DDM in the LD task.

Similarly to the drift rate, the variance parameter also showed

the same results as the drift rate. Participants had increased un-

certainty about which intentions to execute, i.e., which associated

button to press. This can be seen in the light of reduced attentional

capacities. Theories of attention associate resource allocation to

preparatory responses and increased processing speed [55]. The

time needed for accumulating evidence and making a decision is

influenced by the attention directed towards it. Thus, short-form

video consumption competed for such resources and resulted in

decreased evidence accumulation in the PM task [9]. The drift rate

and variance results align with the overlapping attentional and

memory demands that affect accuracy and RT variability via longer

RTs during PM attentional lapses [47].

Finally, we found decreased decision bound in the short-form

video compared to the control condition (Rest). This implies that

participants chose a more liberal response criterion, and therefore,

they accepted less evidence to make a response after the TikTok
interruption. As a result, participants failed to retrieve the intention

and, therefore, made a less informed decision, impairing their accu-

racy. They were not ready, given their excessive memory load, to

monitor the PM cues and make a conscious decision [11]. Taken to-

gether, those results point towards how PM is vulnerable to context-

switching, specifically in the form of engaging short-form videos.

5.3 Consequences for Media Technology

Designers

Our results have consequences in two major areas: mitigating the

adverse effects of short-form videos on PM and intentionally ex-

ploiting the associated PM degradation.

5.3.1 Mitigate the adverse effects of short-form videos on PM. We

show that interruptions with short-form video (such as but not lim-

ited to TikTok) significantly degrade PM post-interruption, which

means that a user is likely to have degraded performance when

they return to their primary task. Prospective memory is a crucial

aspect of daily life and is susceptible to interruption. Therefore, we

argue that a social media feed that negatively impacts cognitive

performance in the real world is generally not desired and could

be classified as a Dark Pattern. Gray et al. [38] outlined five strate-

gies for dark patterns: nagging, obstruction, sneaking, interface

interference, and forced action. Degrading cognitive performance

in the real world does not fall into any of these categories but per-

haps deserves its own classification. Recently, multiple platforms

are introducing features inspired by the TikTok feed (e.g., Insta-

gram Reels and YouTube shorts). By increasing the use of this dark

pattern across the social media landscape, social media designers

might impact PM performance across a broader audience. Addi-

tional research is required to understand how to combat this effect,

but we can suggest some logical first approaches. Past work in

HCI has used digital reminders [118] and other memory aids [97]

to improve PM performance. Moreover, digital reminder systems

have been shown to support rehearsal for highly-specified inten-

tions [13], such as remembering to purchase a specific item in the

supermarket. Similar reminder-based approaches could help users

remember tasks after a social media interruption in a productivity

context. Alternately, proactive reminder systems [122] or Digital

Self-Control Tools [64] can anticipate the social media feed engage-

ment and suggest positive and healthier interruptions [95]. This

would, first, support the overall efficiency of digital reminders for

task management and, second, overcome challenges in support of

PM as intentions are generally triggered by either specific events or

times [50]. However, in line with past work on mindful smartphone

use [62, 111], we highlight the fundamental necessity for users to

maintain agency and be permitted to use their smartphones and

social media feeds in a way that aligns with their own needs and

values.

Finally, since we only observed PM degradation in the TikTok
condition, it follows that interspersing short-form video feeds with

other media formats maymitigate this effect. Investigating interven-

tions to prevent the disruption and generally enhance prospective

memory is important from a practical standpoint [68] and may

potentially improve cognitive performance and well-being for a

generation of internet users.

5.3.2 Leverage the impact of short-form videos to intentionally make
users forget information. Aside from avoiding adverse effects, tech-

nology designers could exploit PM degradation by intentionally

engaging short-form videos as interruptions in strategic situations.

Such interruptions could be employed to help a user forget informa-

tion. For example, this effect could be used in a video game where

the designer wants to challenge the player by disrupting their abil-

ity to remember a task they need to accomplish. Distraction is a

recommended game design technique to increase immersion or the

impact of surprising scenes [90], but it could also increase difficulty.

To operationalize this, a game designer could strategically insert

short cutscenes to distract a player from a task they are supposed
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to remember to perform. This intentional distraction could increase

difficulty while entertaining the user with engaging scenes.

This approach could also be employed therapeutically to help a

user forget about unhappy memories. Distraction through media,

such as video games, has been effectively used for mental health

recovery applications [21]. In practice, this could be combined

with an affective computing paradigm that monitors when a user is

unhappy and interveneswith short videos to disrupt their memories.

However, additional research is required to determine whether

short-form videos could be used for such applications.

Finally, designers could employ short-form videos to help users

transfer their focus to a new task. Research on task-switching shows

that the initial task interferes with the second task because users

maintain residual attention on features that are no longer rele-

vant [89]. This could be implemented by triggering a series of

short-form videos any time a user switches their focus to a new

task, which may reduce the residual attention on the previous task

and thereby reduce the time required to fully focus on the new task.

There is a need for additional future work to determine whether

short-form videos could be used to diminish the adverse effects of

residual attention.

5.4 Limitations & Future Work

Our results must be viewed in light of certain limitations, which

we reflect on below.

We did not evaluate every social media platform, however, we

chose three of the currently most widespread platforms, which

largely vary in their feed format. Other major social media plat-

forms are either very similar to platforms we have already chosen

(e.g., Mastodon shares nearly all feed features with Twitter), or

consist of a combination of features from the platforms we selected

(e.g., Instagram and Facebook both have ‘Reels’, which are user-

generated short-format videos similar to TikTok, Facebook feeds

also contain longer videos, similar to YouTube, and both have text

and image posts of variable lengths, similar to Twitter).

Second, users did not browse their own feeds in the YouTube
condition. Rather, they freely chose a video from a pre-defined list

of options. This approach was chosen to control for video duration

and equalize the interruption length, as different interruption length

has shown to have differential effects on information encoding and

retrieval [4, 77, 79], thus compromising between time demands and

content preference. Future work will address how the effect of long

format videos can impact PM with content chosen by the users and

for different duration.

Additionally, our situated experimental design presented con-

founding variables. We chose three popular social media feeds that

varied in terms of media content. Twitter mostly relies on text con-

tent with sporadic images, Youtube on video content of medium

duration (∼ 11.7 minutes)
3
, while TikTok also employs video con-

tent but with a short duration (15 seconds – 3 minutes). The social

media feeds also differed in the pace of the presented content, i.e.,

context switching and media format. In our study, we did not at-

tempt to quantify how each feed characteristic (number of context

3
https://www.statista.com/statistics/1026923/youtube-video-category-average-

length/

switches and media format) individually contributes to PM degra-

dation. Therefore, we did not employ a condition that combines

text content as Twitter and no context switching as YouTube, e.g., a
10-minutes reading article interruption. However, media modality

has shown to differentially impact memory processing depending

on textual or visual stimulation [54], or when such content is com-

bined [124], interfering with automatic and control processing [85].

Thus, now that our research has identified that different social me-

dia feeds have different impacts on PM, this should motivate future

work to investigate this effect on a more fine-grained level. We

propose a future experiment that systematically varies the pace of

context switching as well as the type of media modality.

Finally, the lexical decision task is an established ongoing task

when investigating PM [31], but it may not be the most ecolog-

ically valid choice. Therefore, future work should aim to extend

our results to real-world tasks, which might bring to light addi-

tional effects that remained hidden in our laboratory setting. One

potential direction in such a more realistic setting is the design of

reminders that could counteract the detrimental effect of interrup-

tions, which has successfully been shown in other contexts [52].

Thus, it could be desirable to compare the effect of encoding re-

minders with a no-reminder condition and a pause condition that

allows participants ample time to encode. Some reminder cues, but

not others, have been shown to improve PM performance in typical

PM paradigms [42].

6 CONCLUSION

In this paper, we investigated the impact of social media on prospec-

tive memory. We conducted a between-subjects study with 60 par-

ticipants comparing three social media feeds (TikTok, Twitter, and
YouTube) and a Rest condition as a control. Our results show that

short video streams such as TikTok have a significant detrimental

impact on prospective memory performance. Specifically, users

showed a worsened speed/accuracy trade-offs as compared to all

other experimental conditions. The other platforms do not signif-

icantly affect performance. Interestingly, social media addiction,

absent-minded phone, and perceived engagement did not have

any relationship or influenced accuracy across conditions. This

allowed us to disentangle the effect of individual differences from

the detrimental one of short-form videos on PM. We contribute

an empirical understanding of the impact of different social media

feeds on PM and discuss consequences for technology designers to

create engaging experiences without negatively impacting users.

7 OPEN SCIENCE

We encourage readers to reproduce and extend our results and anal-

ysis methods. Therefore our experimental setup, collected datasets,

and analysis scripts are available on Github
4
.
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